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ABSTRACT. Let R be a commutative noetherian graded ring. We study Serre’s condi-
tion and Ischebeck-Auslander’s condition in the graduate case. Let q be an integer, we
characterize the ∗q-torsion freeness of graded modules on a ∗Gq-ring.

1. Introduction

Serre’s condition (Sq) and Ischebeck-Auslander’s condition (Gq) have been studied
for a commutative noetherian ring R ([8]). These conditions have an important role for
studying properties of R, such as the regularity and the normality ([7]). The Ischebeck-
Auslander’s condition is less known, it is introduced by Ischebeck in 1967 and it is very
interesting to study the q-torsion of finitely generated R-modules ([5]).
A noetherian ring that satisfies the Ischebeck-Auslander’s condition is said Gq-ring. In
[4] the author observes that the G2-rings are a larger class than the class of the integrally
closed rings. In [6] it is proved that if a finitely generated R-module M satisfies Samuel’s
condition then M is q-torsion free if R is a Gq-ring.
The aim of this paper is to investigate these properties in the graduate case, that is intro-
duced in [3].
Let R be a graded ring and I be an arbitrary ideal of R. I∗ is the graded ideal generated by
all homogeneous elements of I and I∗ is the largest graded ideal contained in I . In partic-
ular, for each prime ideal ℘ ⊂ R, the graded ideal ℘∗ is a prime ideal too. In [2] there are
theorems that link theoretic properties of ℘ and ℘∗ by localizations of finitely generated
graded R-modules, that is dimM℘ = dimM℘∗ + 1 and depthM℘ = depthM℘∗ + 1 for
all not graded prime ideal ℘ of R.

In the section 1 of this paper we consider a graded ring R and we introduce the condi-
tions (∗Sq) and (∗Gq) generalizing the classic conditions for graded prime ideals ℘∗ and
we study connections with the classic conditions (Sq) and (Gq).
Moreover, the Ischebeck-Auslander’s condition (∗Gq) is linked to the ∗q-torsion freeness
of graded R-modules. More precisely, a finitely generated graded R-module M is ∗q-
torsion free if each homogeneous R-sequence of length q is a homogeneous M -sequence.
In the second part of this work we give a characterization of the ∗q-torsion freeness of
graded modules on ∗Gq-rings. This characterization is studied in [8] for not graded rings.
We find some properties related to the ∗q-torsion freeness for graded modules on ∗Gq-
rings.
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2. Conditions (∗Sq) and (∗Gq)

Let R be a commutative noetherian graded ring. In [2] there are some definitions related
to the graded ideals of R and some properties on the dimension and the depth of some
localizations of finitely generated graded R-modules.

Definition 2.1. Let I ⊂ R be an ideal (not necessarily graded). I∗ is the graded ideal of
R generated by all the homogeneous elements of I.

The ideal I∗ is the largest graded ideal contained in I .

Remark 2.1. Let R be a commutative noetherian graded ring and I ⊂ R be an ideal. If I
is homogeneous, then I = I∗.

Remark 2.2. Let R be a commutative noetherian graded ring and ℘ ⊂ R be a prime
ideal, then ℘∗ is a prime ideal too ([2], 1.5.6).

Example 2.1. Let I = (X2 − 1, XY − 1) ⊂ R = K[X, Y ]. The homogeneous elements
of I of degree i are f ∈ Ii = I ∩Ri. We have:

I0 = I ∩R0 = (0)

I1 = I ∩R1 = (0)

I2 = I ∩R2 = 〈X2 −XY 〉,
in fact f = X2 − 1− (XY − 1) = X2 −XY ∈ I2. In general, for i > 2

Ii = I ∩Ri = 〈g(X2 −XY )〉,

with deg(g) = i− 2. It follows that I∗ = (X2 −XY ) ⊂ I .

Proposition 2.1. Let R be a commutative noetherian graded domain and I = (f) ⊂ R be
a principal ideal. I∗ = (0) ⇐⇒ f is not a homogeneous element.

Proof: ⇒) If I∗ = (0), then there aren’t homogeneous elements in I , by definition of
I∗. It follows that the generator f ∈ I is not a homogeneous element.
⇐) Let I = (f), with f not homogeneous element. We prove that in I there aren’t
homogeneous elements. Each element g ∈ I is written as g = af , a ∈ R. We prove that:
if f is not homogeneous then g = af is not a homogeneous element of R, ∀a ∈ R. We
can suppose f = fi + fi+1, i ≥ 1. We have two cases.
I) a ∈ R is a homogeneous element: a = aj ∈ Rj with a 6= 0 and f = fi + fi+1

with fi, fi+1 6= 0, fi ∈ Ri, fi+1 ∈ Ri+1. We have af = ajfi + ajfi+1, where ajfi ∈
Rj+i, ajfi+1 ∈ Rj+i+1 and ajfi 6= 0, ajfi+1 6= 0. It follows that g = af ∈ I is not
homogeneous.
II) a ∈ R is not homogeneous: a = ai1 + · · ·+ ain , 0 ≤ i1 < . . . < in, where aij ∈ Rij

with ai1 , · · · , ain 6= 0 and f = fi + fi+1 with fi, fi+1 6= 0, fi ∈ Ri, fi+1 ∈ Ri+1.
We have: af = ai1fi + · · · + ainfi + ai1fi+1 + · · · + ainfi+1, where ai1fi ∈ Ri1+i,
ainfi+1 ∈ Rin+i+1, ai1fi 6= 0 and ainfi+1 6= 0 because they are the only elements in
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their degree. It follows that g = af ∈ I is not homogeneous ∀a not homogeneous.
I∗ = (0).

The previous proposition is not true if the ring R is not a domain as the following
example shows.

Example 2.2. Let R = Z6[X] be the graded ring with standard graduation and consider
I = (X − 2) the ideal of R generated by a not homogeneous element. In I there are
homogeneous elements, hence I∗ 6= (0). In fact, let a = 3X ∈ R1 be a homogeneous
element of R, we have af = 3X2 ∈ I that is a homogeneous element of degree two. We
have I∗ = (3X2).

Remark 2.3. Let R be graded ring that is not a domain and ℘ = (f) a prime ideal of R
generated by a not homogeneous element. Since ℘∗ is a prime ideal ([2], 1.5.6), it follows
that ℘∗ 6= (0) because (0) is not prime if R is not a domain. Hence in the Proposition 2.1
the condition ⇐) is not true.

Now we investigate some conditions on commutative noetherian rings in the graduate
case. In [8] the Serre’s condition (Sq) is studied.

Definition 2.2. Let R be a commutative noetherian ring, q be an integer. R satisfies Serre’s
condition (Sq) if for all prime ideal ℘ of R

depthR℘ ≥ min{q,dimR℘}.

In connection to the classical condition (Sq), we are able to give the following properties
for prime ideals of graded rings.

Definition 2.3. Let R be a commutative noetherian graded ring, q be an integer. R satisfies
Serre’s condition (∗Sq) if for all prime ideal ℘ of R

depthR℘∗ ≥ min{q,dimR℘∗}.

Definition 2.4. Let R be a commutative noetherian graded ring, q be an integer. R satisfies
Serre’s condition (S̃q) if for all not graded prime ideal ℘ of R

depthR℘ ≥ min{q,dimR℘}.

In [3](Cor.1.3) it is proved that a graded ring R satisfies (Sq) if and only if for all
homogeneous prime ideal ℘ of R depthR℘ ≥ min{q,dimR℘}. Now we reformulate
the same result in terms of the condition (∗Sq) and also the proof of this result uses the
condition (∗Sq).

Theorem 2.1. Let R be a commutative noetherian graded ring, q be an integer.
R satisfies the condition (Sq) ⇔ R satisfies the condition (∗Sq).

Proof: ⇐) Let ℘ be a not graded prime ideal, we have the relations ([2], 1.5.8 and
1.5.9):

dimR℘∗ = dimR℘ − 1
depthR℘∗ = depthR℘ − 1,



4 M. LA BARBIERA

then: depthR℘ = depthR℘∗ + 1 ≥ min{q,dimR℘∗} + 1 ≥ min{q,dimR℘∗ + 1} =
min{q,dimR℘}, that is the condition (Sq).
⇒) It is trivial.

Remark 2.4. For a graded ring R we have:
(Sq) ⇒ (S̃q), since in the Definition 2.2 ℘ is an arbitrary prime ideal.
In general, (S̃q) does not imply (Sq). It follows by previous definitions.

Now we study the connection between the conditions (∗Sq) and (S̃q).

Remark 2.5. Let R be a commutative noetherian graded ring, q be an integer.
1) R satisfies the condition (∗Sq) =⇒ R satisfies the condition (S̃q+1).
2) R satisfies the condition (S̃q+1) =⇒ ∀℘ not graded prime ideal of R depthR℘∗ ≥
min{q,dimR℘∗}.

Proof: 1) If ℘ is not a graded prime ideal, we have the relations ([2]):

dimR℘∗ = dimR℘ − 1

depthR℘∗ = depthR℘ − 1.

Because R satisfies the condition (∗Sq) one has

depthR℘∗ ≥ min{q,dimR℘∗}.

Using the previous relations we have depthR℘ ≥ min{q,dimR℘ − 1}+ 1, it follows
depthR℘ ≥ min{q + 1,dimR℘}, for all not graded prime ideal ℘ ∈ Spec(R),
that is R satisfies the condition (S̃q+1).
These relations are not valid also for graded ideals, so R satisfies only the condition (S̃q+1)
and not (Sq+1).
2) We suppose that R satisfies the condition (S̃q+1), that is
depthR℘ ≥ min{q + 1,dimR℘}, for all not graded prime ideal ℘ ∈ Spec(R). We have
the relations:

dimR℘ = dimR℘∗ + 1

depthR℘ = depthR℘∗ + 1,

it follows depthR℘∗ ≥ min{q + 1,dimR℘∗+1}−1, hence: depthR℘∗ ≥ min{q,dimR℘∗}
for all not graded prime ideal ℘ ∈ Spec(R).
This condition is not (∗Sq) because the previous relations are not valid for graded prime
ideals.

In [8] it is studied the condition (Gq) of Ischebeck-Auslander.

Definition 2.5. Let R be a commutative noetherian ring and q > 0 be an integer. R
satisfies the condition (Gq) of Ischebeck-Auslander (that is R is a Gq-ring) if:
1) R satisfies the condition (Sq);
2) For all prime ideal ℘ of R such that dimR℘ < q, R℘ is a Gorenstein ring.

For a graded ring we give the following definitions.
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Definition 2.6. Let R be a commutative noetherian graded ring and q > 0 be an integer.
R satisfies the condition (∗Gq) of Ischebeck-Auslander (that is R is a ∗Gq-ring) if:
1) R satisfies the condition (∗Sq);
2) For all prime ideal ℘ of R such that dimR℘∗ < q, R℘∗ is a Gorenstein ring.

Definition 2.7. Let R be a commutative noetherian graded ring and q > 0 be an integer.
R satisfies the condition (G̃q) of Ischebeck-Auslander (that is R is a G̃q-ring) if:
1) R satisfies the condition (S̃q);
2) For all not graded prime ideal ℘ of R such that dimR℘ < q, R℘ is a Gorenstein ring.

In [3](Cor.1.3) it is proved that a graded ring R satisfies (Gq) if and only if for all
homogeneous prime ideal ℘ of R such that dimR℘ < q, R℘ is a Gorenstein ring. Now we
reformulate the same result in terms of the condition (∗Gq).

Theorem 2.2. Let R be a commutative noetherian graded ring, q > 0 be an integer.
R satisfies the condition (Gq) ⇔ R satisfies the condition (∗Gq).

Proof: ⇐) By Theorem 2.1 (∗Sq) ⇒ (Sq).
For all graded prime ideals R satisfies the condition (Gq). Let ℘ a not graded prime ideal
such that dimR℘ < q. Then dimR℘∗ = dimR℘ − 1 < q, hence by hypothesis R℘∗ is
a Gorenstein ring. By [2](§3.6) R℘∗ is a Gorenstein ring implies that R℘ is a Gorenstein
ring.
⇒) It is trivial.

Remark 2.6. For a graded ring R we have:
(Gq) ⇒ (G̃q), since in the condition (Gq) ℘ is an arbitrary prime ideal.
(G̃q) does not imply (Gq). It follows by previous definitions.

Remark 2.7. Let R be a commutative noetherian graded ring and q > 0 be an integer.
1) R is a ∗Gq-ring ⇒ R is a G̃q+1-ring.
2) If R is a G̃q+1-ring then:
i) ∀ ℘ not graded prime ideal of R depthR℘∗ ≥ min{q,dimR℘∗};
ii) For all not graded prime ideal ℘ of R such that dimR℘∗ < q, R℘∗ is a Gorenstein ring.

Proof: 1) We suppose that R is a ∗Gq-ring. By Remark 2.5, if R satisfies the condition
(∗Sq) then R satisfies the condition (S̃q+1). As R is a ∗Gq-ring we have: for all prime
ideal ℘ of R such that dimR℘∗ < q, R℘∗ is a Gorenstein ring. If ℘ is not graded, we
have dimR℘ = dimR℘∗ + 1 < q + 1, and R℘∗ Gorenstein ⇒ R℘ Gorenstein ([2], §3.6).
Then the previous condition become: for all not graded prime ideal ℘ of R such that
dimR℘ < q + 1, R℘ is a Gorenstein ring. Hence R is a G̃q+1-ring.
2) We suppose that R is a G̃q+1-ring.
By Remark 2.5(2), if R satisfies the condition (S̃q+1), then ∀℘ not graded prime ideal of
R depthR℘∗ ≥ min{q,dimR℘∗}, that is i).
If ℘ is not graded, then: dimR℘∗ = dimR℘ − 1, and R℘ Gorenstein ⇒ R℘∗ Gorenstein
([2], §3.6).
By hypothesis, for all not graded prime ideal ℘ of R such that dimR℘ < q + 1, R℘ is a
Gorenstein ring, so we have: for all not graded prime ideal ℘ of R such that dimR℘∗ =
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dimR℘ − 1 < q, R℘∗ is a Gorenstein ring, that is ii).
These conditions do not mean that R is a ∗Gq-ring because the relations used are not valid
for graded prime ideals.

Example 2.3. Let R = K[X1, . . . , Xn] be the polynomial ring over a field K. R is a
graded ring with standard graduation.
R is a ∗Gq-ring for all q > 0 because it is a regular ring.

Definition 2.8. Let R be a commutative noetherian graded ring, q be an integer. A graded
finitely generated R-module E satisfies Serre’s condition (∗Sq) if for all prime ideal ℘ of
R

depthE℘∗ ≥ min{q,dimE℘∗}.
Definition 2.9. Let R be a commutative noetherian graded ring and q > 0 be an integer. A
graded finitely generated R-module E satisfies the condition (∗Gq) of Ischebeck-Auslander
(that is E is a ∗Gq-module) if:
1) E satisfies the condition (∗Sq);
2) For all prime ideal ℘ ∈ Supp(E) such that dimE℘∗ < q, E℘∗ is a Gorenstein R℘∗ -
module.

Theorem 2.3. Let R be a commutative noetherian graded ring, q be an integer.
1) E satisfies the condition (∗Sq) ⇔ E satisfies the condition (Sq), q ≥ 0.
2) E satisfies the condition (∗Gq) ⇔ E satisfies the condition (Gq), q > 0.

Proof: (See Theorems 2.1 and 2.2).

Proposition 2.2. Let R be a commutative noetherian graded ring, q > 0 be an integer and
E be a finitely generated R-module. The following conditions are equivalent:
1) E satisfies the condition (∗Gq);
2) For all prime ideal ℘ of R such that depthE℘∗ < q, E℘∗ is a graded R℘∗ -module of
Gorenstein.

Proof: 1) ⇒ 2) By hypothesis E satisfies (∗Gq). We suppose there exists ℘ of R such
that depthE℘∗ < q and E℘∗ is not a Gorenstein R℘∗ -module, then by hypothesis (see
Definition 2.9) dimE℘∗ ≥ q. Moreover E satisfies the condition (∗Sq), then depthE℘∗ ≥
min{q,dimE℘∗}. But dimE℘∗ ≥ q, so we have:
depthE℘∗ ≥ min{q,dimE℘∗} = q ⇒ depthE℘∗ ≥ q.
Hence we obtain a contradiction. It follows that E℘∗ is a graded Gorenstein R℘∗ -module.
2) ⇒ 1) It is sufficient to prove that E satisfies the condition (∗Sq). We suppose that E
doesn’t satisfy (∗Sq). If there exists ℘ of R such that depthE℘∗ < min{q,dimE℘∗}, then
E℘∗ 6= 0. Hence we have two case:
I) If dimE℘∗ ≤ q, depthE℘∗ < dimE℘∗ ≤ q. Hence E℘∗ is not Gorenstein and that is a
contradiction for 2).
II) If dimE℘∗ > q, depthE℘∗ < q and E℘∗ is not Gorenstein and that is a contradiction
too. It follows that E satisfies the condition (∗Sq).

3. ∗Gq-rings and ∗q-torsion

Let R be a commutative noetherian ring, the Samuel’s condition (aq) is studied in [6],
[8]. We give the following definitions for graded rings.
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Definition 3.1. Let R be a commutative noetherian graded ring, q > 0 be an integer and
E be a finitely generated graded R-module. E satisfies Samuel’s condition (∗aq) (or E is
an aq-module) if each homogeneous R-sequence of length less or equal than q made of not
invertible elements is a homogeneous E-sequence.

Definition 3.2. Let R be a commutative noetherian graded ring and q > 0 be an integer.
Let E be a finitely generated graded R-module. E is a q-th module of syzygies if there
exists an exact sequence:

0→E→P1 → · · · → Pq,

where each Pi is a graded projective R-module.

Definition 3.3. Let R be a commutative noetherian graded ring, E be a finitely generated
graded R-module and q > 0 be an integer. E is ∗q-torsion free if each homogeneous
R-sequence of length q is a homogeneous E-sequence.

Remark 3.1. If E is q-torsion free then E is ∗q-torsion free.

Theorem 3.1. Let R be a ∗Gq-ring, E be a graded finitely generated R-module and q > 0
be an integer. The following conditions are equivalent:

1) E satisfies Samuel’s condition (∗aq);
2) E is a q-th module of syzygies;
3) E is ∗q-torsion free.

Proof: 1) ⇒ 2) Each ∗aq-module on a ∗Gq-ring is a q-th module of syzygies ([5], 4.6).
2) ⇒ 3) R is a ∗Gq-ring if and only if each (q+1)-th module of syzygies of E (Syzq+1(E))
is ∗(q + 1)-torsion free ([8], 4.3). If Syzq+1(E) is ∗(q + 1)-torsion free then Syzj(E) is
∗j-torsion free for all j = 1, . . . , q + 1 ([8], 4.2). It follows that Syzq(E) is ∗q-torsion
free. By hypothesis E is a q-th module of syzygies, hence E is ∗q-torsion free.
For a generic graded ring R we prove that 3) ⇒ 2) ⇒ 1).
3) ⇒ 2) The two conditions are equivalent for graded modules of finite projective dimen-
sion ([1], 4.25).
2) ⇒ 1) Each q-th graded module of syzygies is an ∗aq-module ([5], 4.4).

Corollary 3.1. Let R be a ∗Gq-ring, E be a graded finitely generated R-module.
E is ∗q-torsion free =⇒ depthE℘ ≥ min{q + 1,depthR℘}, ∀℘ ∈ Spec(R) not graded.

Proof: If E is ∗q-torsion free then E is ∗aq-module by Theorem 3.1. This implies that
for all not graded prime ideal ℘ ∈ Spec(R) depthE℘∗ ≥ min{q,depthR℘∗} ([5], 4.2).
We have the relations ([2], 1.5.9)

depthR℘∗ = depthR℘ − 1

depthE℘∗ = depthE℘ − 1.

So we can write: depthE℘ ≥ min{q,depthR℘ − 1}+ 1.
Hence for all not graded prime ideal ℘ ∈ Spec(R) we have:

depthE℘ ≥ min{q + 1,depthR℘}.

Remark 3.2. If E is (q + 1)-torsion free, then E is q-torsion free ([8], 4.11). Hence by
definition E is ∗q-torsion free.
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Proposition 3.1. Let R be a commutative noetherian graded ring, E be a graded finitely
generated R-module and q > 0 be an integer. If E is ∗q-torsion free, then E satisfies the
following conditions:
1) For all prime ideal ℘ of R such that depthR℘∗ < q, E℘∗ is ∗q-torsion free as R℘∗ -
module;
2) For all prime ideal ℘ of R such that depthR℘∗ ≥ q, depthE℘∗ ≥ q.

Proof: We suppose that E is ∗q-torsion free. If ℘ ∈ Spec(R), E℘∗ is a graded R℘∗ -
module and E℘∗ is ∗q-torsion free because R℘∗ is flat. It follows that the condition 1) is
verified.
Moreover E℘∗ satisfies the condition (∗aq) ([5], 4.4), then each R℘∗ -sequence of length q
is an E℘∗ -sequence. As a consequence:

depthR℘∗ ≥ q ⇒ depthE℘∗ ≥ q,

that is the condition 2).

Proposition 3.2. Let R be a ∗Gq-ring, E be a graded finitely generated R-module and
q > 0 be an integer. The following conditions are equivalent:
1) E is ∗q-torsion free;
2) There exists an exact sequence:

0→E→F1 → · · · → Fq,

where each Fi is a free graded finitely generated R-module;
3) E is ∗(q − 1)-torsion free and for all ℘ ∈ Spec(R) such that ht℘∗ ≥ q, we have
depthE℘∗ ≥ q.

Proof: 1) ⇔ 2) It follows by Theorem 3.1.
1) ⇒ 3) If E is ∗q-torsion free then E is ∗(q− 1)-torsion free ([8], 4.2). Let ℘ ∈ Spec(R)
such that ht℘∗ ≥ q. We have depthR℘∗ ≥ q because R satisfies (∗Sq) condition. By
Proposition 3.1 we have:

depthR℘∗ ≥ q ⇒ depthE℘∗ ≥ q.

3) ⇒ 1) E satisfies the condition (∗aq−1) because E is ∗(q − 1)-torsion free (by Theorem
3.1). Then for all ℘ ∈ Spec(R)

depthE℘∗ ≥ min{q− 1,depthR℘∗}, ([5], 4.2).

We prove that E satisfies the condition (∗aq), that is

depthE℘∗ ≥ min{q,depthR℘∗}.

If depthR℘∗ < q, then depthE℘∗ ≥ min{q− 1,depthR℘∗} = depthR℘∗ ⇒ depthE℘∗ ≥
depthR℘∗ . It follows that depthE℘∗ ≥ min{q,depthR℘∗}.
If depthR℘∗ ≥ q, then htR℘∗ ≥ depthR℘∗ ≥ q and by hypothesis it follows that
depthE℘∗ ≥ q = min{q,depthR℘∗}. Hence E satisfies the condition (∗aq) and, as
R is a ∗Gq-ring, E is ∗q-torsion free (by Theorem 3.1).
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