Atti dell'Accademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche e Naturali Vol. LXXXIV, C1A0601007 (2006) Adunanza del 28 novembre 2005

CONDITIONS (S_q) AND (G_q) ON GRADED RINGS

MONICA LA BARBIERA

(Nota presentata dal Socio Ordinario Gaetana Restuccia)

ABSTRACT. Let R be a commutative noetherian graded ring. We study Serre's condition and Ischebeck-Auslander's condition in the graduate case. Let q be an integer, we characterize the *q-torsion freeness of graded modules on a * G_q -ring.

1. Introduction

Serre's condition (S_q) and Ischebeck-Auslander's condition (G_q) have been studied for a commutative noetherian ring R ([8]). These conditions have an important role for studying properties of R, such as the regularity and the normality ([7]). The Ischebeck-Auslander's condition is less known, it is introduced by Ischebeck in 1967 and it is very interesting to study the q-torsion of finitely generated R-modules ([5]).

A noetherian ring that satisfies the Ischebeck-Auslander's condition is said G_q -ring. In [4] the author observes that the G_2 -rings are a larger class than the class of the integrally closed rings. In [6] it is proved that if a finitely generated *R*-module *M* satisfies Samuel's condition then *M* is *q*-torsion free if *R* is a G_q -ring.

The aim of this paper is to investigate these properties in the graduate case, that is introduced in [3].

Let R be a graded ring and I be an arbitrary ideal of R. I^* is the graded ideal generated by all homogeneous elements of I and I^* is the largest graded ideal contained in I. In particular, for each prime ideal $\wp \subset R$, the graded ideal \wp^* is a prime ideal too. In [2] there are theorems that link theoretic properties of \wp and \wp^* by localizations of finitely generated graded R-modules, that is $dim M_{\wp} = dim M_{\wp^*} + 1$ and $depth M_{\wp} = depth M_{\wp^*} + 1$ for all not graded prime ideal \wp of R.

In the section 1 of this paper we consider a graded ring R and we introduce the conditions (* S_q) and (* G_q) generalizing the classic conditions for graded prime ideals \wp^* and we study connections with the classic conditions (S_q) and (G_q).

Moreover, the Ischebeck-Auslander's condition $({}^*G_q)$ is linked to the *q -torsion freeness of graded R-modules. More precisely, a finitely generated graded R-module M is *q torsion free if each homogeneous R-sequence of length q is a homogeneous M-sequence. In the second part of this work we give a characterization of the *q -torsion freeness of graded modules on *G_q -rings. This characterization is studied in [8] for not graded rings. We find some properties related to the *q -torsion freeness for graded modules on *G_q rings. We like to thank Professor Gaetana Restuccia for useful discussions about the results of this work.

2. Conditions $({}^*S_q)$ and $({}^*G_q)$

Let R be a commutative noetherian graded ring. In [2] there are some definitions related to the graded ideals of R and some properties on the dimension and the depth of some localizations of finitely generated graded R-modules.

Definition 2.1. Let $I \subset R$ be an ideal (not necessarily graded). I^* is the graded ideal of R generated by all the homogeneous elements of I.

The ideal I^* is the largest graded ideal contained in I.

Remark 2.1. Let R be a commutative noetherian graded ring and $I \subset R$ be an ideal. If I is homogeneous, then $I = I^*$.

Remark 2.2. Let R be a commutative noetherian graded ring and $\wp \subset R$ be a prime ideal, then \wp^* is a prime ideal too ([2], 1.5.6).

Example 2.1. Let $I = (X^2 - 1, XY - 1) \subset R = K[X, Y]$. The homogeneous elements of I of degree i are $f \in I_i = I \cap R_i$. We have:

$$I_0 = I \cap R_0 = (0)$$

$$I_1 = I \cap R_1 = (0)$$

$$I_2 = I \cap R_2 = \langle X^2 - XY \rangle,$$
in fact $f = X^2 - 1 - (XY - 1) = X^2 - XY \in I_2$. In general, for $i > 2$

$$I_i = I \cap R_i = \langle g(X^2 - XY) \rangle,$$

with $\deg(q) = i - 2$. It follows that $I^* = (X^2 - XY) \subset I$.

Proposition 2.1. Let R be a commutative noetherian graded domain and $I = (f) \subset R$ be a principal ideal. $I^* = (0) \iff f$ is not a homogeneous element.

Proof: \Rightarrow) If $I^* = (0)$, then there aren't homogeneous elements in I, by definition of I^* . It follows that the generator $f \in I$ is not a homogeneous element.

 \Leftarrow) Let I = (f), with f not homogeneous element. We prove that in I there aren't homogeneous elements. Each element $g \in I$ is written as g = af, $a \in R$. We prove that: if f is not homogeneous then g = af is not a homogeneous element of R, $\forall a \in R$. We can suppose $f = f_i + f_{i+1}$, $i \ge 1$. We have two cases.

I) $a \in R$ is a homogeneous element: $a = a_j \in R_j$ with $a \neq 0$ and $f = f_i + f_{i+1}$ with $f_i, f_{i+1} \neq 0$, $f_i \in R_i, f_{i+1} \in R_{i+1}$. We have $af = a_jf_i + a_jf_{i+1}$, where $a_jf_i \in R_{j+i}, a_jf_{i+1} \in R_{j+i+1}$ and $a_jf_i \neq 0$, $a_jf_{i+1} \neq 0$. It follows that $g = af \in I$ is not homogeneous.

II) $a \in R$ is not homogeneous: $a = a_{i_1} + \dots + a_{i_n}, 0 \le i_1 < \dots < i_n$, where $a_{i_j} \in R_{i_j}$ with $a_{i_1}, \dots, a_{i_n} \ne 0$ and $f = f_i + f_{i+1}$ with $f_i, f_{i+1} \ne 0, f_i \in R_i, f_{i+1} \in R_{i+1}$. We have: $af = a_{i_1}f_i + \dots + a_{i_n}f_i + a_{i_1}f_{i+1} + \dots + a_{i_n}f_{i+1}$, where $a_{i_1}f_i \in R_{i_1+i}$, $a_{i_n}f_{i+1} \in R_{i_n+i+1}, a_{i_1}f_i \ne 0$ and $a_{i_n}f_{i+1} \ne 0$ because they are the only elements in The previous proposition is not true if the ring R is not a domain as the following example shows.

Example 2.2. Let $R = \mathbb{Z}_6[X]$ be the graded ring with standard graduation and consider I = (X - 2) the ideal of R generated by a not homogeneous element. In I there are homogeneous elements, hence $I^* \neq (0)$. In fact, let $a = 3X \in R_1$ be a homogeneous element of R, we have $af = 3X^2 \in I$ that is a homogeneous element of degree two. We have $I^* = (3X^2)$.

Remark 2.3. Let R be graded ring that is not a domain and $\wp = (f)$ a prime ideal of R generated by a not homogeneous element. Since \wp^* is a prime ideal ([2], 1.5.6), it follows that $\wp^* \neq (0)$ because (0) is not prime if R is not a domain. Hence in the Proposition 2.1 the condition \Leftarrow) is not true.

Now we investigate some conditions on commutative noetherian rings in the graduate case. In [8] the Serre's condition (S_q) is studied.

Definition 2.2. Let R be a commutative noetherian ring, q be an integer. R satisfies Serre's condition (S_q) if for all prime ideal \wp of R

 $\mathrm{depth}R_{\wp} \geq \min\{\mathbf{q}, \mathrm{dim}R_{\wp}\}.$

In connection to the classical condition (S_q) , we are able to give the following properties for prime ideals of graded rings.

Definition 2.3. Let R be a commutative noetherian graded ring, q be an integer. R satisfies Serre's condition (* S_q) if for all prime ideal \wp of R

 $\operatorname{depth} R_{\wp^*} \geq \min\{\mathbf{q}, \dim R_{\wp^*}\}.$

Definition 2.4. Let R be a commutative noetherian graded ring, q be an integer. R satisfies Serre's condition (\widetilde{S}_q) if for all not graded prime ideal \wp of R

 $\operatorname{depth} R_{\wp} \geq \min\{q, \dim R_{\wp}\}.$

In [3](Cor.1.3) it is proved that a graded ring R satisfies (S_q) if and only if for all homogeneous prime ideal \wp of R depth $R_{\wp} \ge \min\{q, \dim R_{\wp}\}$. Now we reformulate the same result in terms of the condition $(*S_q)$ and also the proof of this result uses the condition $(*S_q)$.

Theorem 2.1. Let R be a commutative noetherian graded ring, q be an integer. R satisfies the condition $(S_q) \Leftrightarrow R$ satisfies the condition $(*S_q)$.

Proof: \Leftarrow) Let \wp be a not graded prime ideal, we have the relations ([2], 1.5.8 and 1.5.9):

$$\dim R_{\wp^*} = \dim R_{\wp} - 1$$
$$\operatorname{depth} R_{\wp^*} = \operatorname{depth} R_{\wp} - 1,$$

then: depth $R_{\wp} = \text{depth}R_{\wp^*} + 1 \ge \min\{q, \dim R_{\wp^*}\} + 1 \ge \min\{q, \dim R_{\wp^*} + 1\} = \min\{q, \dim R_{\wp}\}$, that is the condition (S_q) . \Rightarrow) It is trivial.

Remark 2.4. For a graded ring R we have:

 $(S_q) \Rightarrow (\widetilde{S_q})$, since in the Definition **2.2** \wp is an arbitrary prime ideal. In general, $(\widetilde{S_q})$ does not imply (S_q) . It follows by previous definitions.

Now we study the connection between the conditions $({}^*S_q)$ and (S_q) .

Remark 2.5. Let R be a commutative noetherian graded ring, q be an integer. 1) R satisfies the condition $({}^*S_q) \Longrightarrow R$ satisfies the condition $(\widetilde{S_{q+1}})$. 2) R satisfies the condition $(\widetilde{S_{q+1}}) \Longrightarrow \forall \wp$ not graded prime ideal of R depth $R_{\wp^*} \ge \min\{q, \dim R_{\wp^*}\}$.

Proof: 1) If \wp is not a graded prime ideal, we have the relations ([2]):

$$\dim R_{\wp^*} = \dim R_\wp - 1$$

$$\mathrm{depth}R_{\wp^*} = \mathrm{depth}R_{\wp} - 1.$$

Because R satisfies the condition $({}^*S_q)$ one has

$$\operatorname{depth} R_{\wp^*} \ge \min\{\mathbf{q}, \operatorname{dim} R_{\wp^*}\}.$$

Using the previous relations we have depth $R_{\wp} \ge \min\{q, \dim R_{\wp} - 1\} + 1$, it follows depth $R_{\wp} \ge \min\{q + 1, \dim R_{\wp}\}$, for all not graded prime ideal $\wp \in \operatorname{Spec}(R)$, that is R satisfies the condition $(\widetilde{S_{q+1}})$.

These relations are not valid also for graded ideals, so R satisfies only the condition $(\widetilde{S_{q+1}})$ and not (S_{q+1}) .

2) We suppose that R satisfies the condition $(\widetilde{S_{q+1}})$, that is $\operatorname{depth} R_{\wp} \geq \min\{q+1, \dim R_{\wp}\}$, for all not graded prime ideal $\wp \in \operatorname{Spec}(R)$. We have the relations:

 $\mathrm{dim}R_\wp=\mathrm{dim}R_{\wp^*}+1$

$$lepthR_{\wp} = depthR_{\wp^*} + 1,$$

it follows depth $R_{\wp^*} \ge \min\{q+1, \dim R_{\wp^*}+1\}-1$, hence: depth $R_{\wp^*} \ge \min\{q, \dim R_{\wp^*}\}$ for all not graded prime ideal $\wp \in \operatorname{Spec}(R)$.

This condition is not $({}^*S_q)$ because the previous relations are not valid for graded prime ideals.

In [8] it is studied the condition (G_q) of Ischebeck-Auslander.

Definition 2.5. Let R be a commutative noetherian ring and q > 0 be an integer. R satisfies the condition (G_q) of Ischebeck-Auslander (that is R is a G_q -ring) if: 1) R satisfies the condition (S_q) ;

2) For all prime ideal \wp of R such that dim $R_{\wp} < q$, R_{\wp} is a Gorenstein ring.

For a graded ring we give the following definitions.

Definition 2.6. Let R be a commutative noetherian graded ring and q > 0 be an integer. R satisfies the condition (* G_q) of Ischebeck-Auslander (that is R is a * G_q -ring) if: 1) R satisfies the condition (* S_q):

1) R satisfies the condition $({}^*S_q)$;

2) For all prime ideal \wp of R such that $\dim R_{\wp^*} < q$, R_{\wp^*} is a Gorenstein ring.

Definition 2.7. Let R be a commutative noetherian graded ring and q > 0 be an integer. R satisfies the condition (\widetilde{G}_q) of Ischebeck-Auslander (that is R is a \widetilde{G}_q -ring) if:

1) R satisfies the condition (S_q) ;

2) For all not graded prime ideal \wp of R such that $\dim R_{\wp} < q$, R_{\wp} is a Gorenstein ring.

In [3](Cor.1.3) it is proved that a graded ring R satisfies (G_q) if and only if for all homogeneous prime ideal \wp of R such that $\dim R_{\wp} < q$, R_{\wp} is a Gorenstein ring. Now we reformulate the same result in terms of the condition $(*G_q)$.

Theorem 2.2. Let R be a commutative noetherian graded ring, q > 0 be an integer. R satisfies the condition $(G_q) \Leftrightarrow R$ satisfies the condition $(^*G_q)$.

Proof: \Leftarrow) By Theorem 2.1 (* S_q) \Rightarrow (S_q).

For all graded prime ideals R satisfies the condition (G_q) . Let \wp a not graded prime ideal such that $\dim R_{\wp} < q$. Then $\dim R_{\wp^*} = \dim R_{\wp} - 1 < q$, hence by hypothesis R_{\wp^*} is a Gorenstein ring. By [2](§3.6) R_{\wp^*} is a Gorenstein ring implies that R_{\wp} is a Gorenstein ring.

 \Rightarrow) It is trivial.

Remark 2.6. For a graded ring R we have: $(G_q) \Rightarrow (\widetilde{G}_q)$, since in the condition $(G_q) \wp$ is an arbitrary prime ideal. (\widetilde{G}_q) does not imply (G_q) . It follows by previous definitions.

Remark 2.7. Let R be a commutative noetherian graded ring and q > 0 be an integer. 1) R is a *G_q -ring \Rightarrow R is a $\widetilde{G_{q+1}}$ -ring.

2) If R is a G_{q+1} -ring then:

i) $\forall \wp$ not graded prime ideal of R depth $R_{\wp^*} \ge \min\{q, \dim R_{\wp^*}\};$

ii) For all not graded prime ideal \wp of R such that $\dim R_{\wp^*} < q$, R_{\wp^*} is a Gorenstein ring.

Proof: 1) We suppose that R is a *G_q -ring. By Remark 2.5, if R satisfies the condition $({}^*S_q)$ then R satisfies the condition (\widetilde{S}_{q+1}) . As R is a *G_q -ring we have: for all prime ideal \wp of R such that $\dim_{R_{\wp^*}} < q$, R_{\wp^*} is a Gorenstein ring. If \wp is not graded, we have $\dim_{R_{\wp}} = \dim_{R_{\wp^*}} + 1 < q + 1$, and R_{\wp^*} Gorenstein $\Rightarrow R_{\wp}$ Gorenstein ([2], §3.6). Then the previous condition become: for all not graded prime ideal \wp of R such that $\dim_{R_{\wp}} < q + 1$, R_{\wp} is a Gorenstein ring. Hence R is a \widetilde{G}_{q+1} -ring.

2) We suppose that R is a $\widetilde{G_{q+1}}$ -ring.

By Remark 2.5(2), if R satisfies the condition $(\widetilde{S_{q+1}})$, then $\forall \wp$ not graded prime ideal of $R \operatorname{depth} R_{\wp^*} \ge \min\{q, \dim R_{\wp^*}\}$, that is *i*).

If \wp is not graded, then: $\dim R_{\wp^*} = \dim R_{\wp} - 1$, and R_{\wp} Gorenstein $\Rightarrow R_{\wp^*}$ Gorenstein ([2], §3.6).

By hypothesis, for all not graded prime ideal \wp of R such that $\dim R_{\wp} < q + 1$, R_{\wp} is a Gorenstein ring, so we have: for all not graded prime ideal \wp of R such that $\dim R_{\wp^*} =$

 $\dim R_{\wp} - 1 < q, R_{\wp^*}$ is a Gorenstein ring, that is *ii*).

These conditions do not mean that R is a *G_q -ring because the relations used are not valid for graded prime ideals.

Example 2.3. Let $R = K[X_1, ..., X_n]$ be the polynomial ring over a field K. R is a graded ring with standard graduation.

R is a *G_q -ring for all q > 0 because it is a regular ring.

Definition 2.8. Let R be a commutative noetherian graded ring, q be an integer. A graded finitely generated R-module E satisfies Serre's condition (* S_q) if for all prime ideal \wp of R

 $\mathrm{depth}E_{\wp^*} \geq \min\{\mathbf{q}, \mathrm{dim}E_{\wp^*}\}.$

Definition 2.9. Let R be a commutative noetherian graded ring and q > 0 be an integer. A graded finitely generated R-module E satisfies the condition (*G_q) of Ischebeck-Auslander (that is E is a *G_q -module) if:

1) E satisfies the condition (*S_q);

2) For all prime ideal $\wp \in Supp(E)$ such that $\dim E_{\wp^*} < q$, E_{\wp^*} is a Gorenstein R_{\wp^*} -module.

Theorem 2.3. Let R be a commutative noetherian graded ring, q be an integer.

1) E satisfies the condition (* S_q) \Leftrightarrow E satisfies the condition (S_q), $q \ge 0$.

2) E satisfies the condition (* G_q) \Leftrightarrow E satisfies the condition (G_q), q > 0.

Proof: (See Theorems 2.1 and 2.2).

Proposition 2.2. Let R be a commutative noetherian graded ring, q > 0 be an integer and E be a finitely generated R-module. The following conditions are equivalent:

1) E satisfies the condition (${}^{*}G_{q}$);

2) For all prime ideal \wp of R such that depth $E_{\wp^*} < q$, E_{\wp^*} is a graded R_{\wp^*} -module of Gorenstein.

Proof: 1) \Rightarrow 2) By hypothesis E satisfies (* G_q). We suppose there exists \wp of R such that depth $E_{\wp^*} < q$ and E_{\wp^*} is not a Gorenstein R_{\wp^*} -module, then by hypothesis (see Definition 2.9) dim $E_{\wp^*} \ge q$. Moreover E satisfies the condition (* S_q), then depth $E_{\wp^*} \ge \min\{q, \dim E_{\wp^*}\}$. But dim $E_{\wp^*} \ge q$, so we have:

 $\mathrm{depth}E_{\wp^*} \geq \min\{\mathbf{q}, \mathrm{dim}E_{\wp^*}\} = q \Rightarrow \mathrm{depth}E_{\wp^*} \geq q.$

Hence we obtain a contradiction. It follows that E_{\wp^*} is a graded Gorenstein R_{\wp^*} -module. $2) \Rightarrow 1$) It is sufficient to prove that E satisfies the condition $(*S_q)$. We suppose that E doesn't satisfy $(*S_q)$. If there exists \wp of R such that $\operatorname{depth} E_{\wp^*} < \min\{q, \dim E_{\wp^*}\}$, then $E_{\wp^*} \neq 0$. Hence we have two case:

I) If $\dim E_{\wp^*} \leq q$, $\operatorname{depth} E_{\wp^*} < \dim E_{\wp^*} \leq q$. Hence E_{\wp^*} is not Gorenstein and that is a contradiction for 2).

II) If dim $E_{\wp^*} > q$, depth $E_{\wp^*} < q$ and E_{\wp^*} is not Gorenstein and that is a contradiction too. It follows that E satisfies the condition (* S_q).

3. $*G_q$ -rings and *q-torsion

Let R be a commutative noetherian ring, the Samuel's condition (a_q) is studied in [6], [8]. We give the following definitions for graded rings.

Definition 3.1. Let R be a commutative noetherian graded ring, q > 0 be an integer and E be a finitely generated graded R-module. E satisfies Samuel's condition ($*a_q$) (or E is an a_q -module) if each homogeneous R-sequence of length less or equal than q made of not invertible elements is a homogeneous E-sequence.

Definition 3.2. Let R be a commutative noetherian graded ring and q > 0 be an integer. Let E be a finitely generated graded R-module. E is a q-th module of syzygies if there exists an exact sequence:

$$0 \rightarrow E \rightarrow P_1 \rightarrow \cdots \rightarrow P_q,$$

where each P_i is a graded projective *R*-module.

Definition 3.3. Let R be a commutative noetherian graded ring, E be a finitely generated graded R-module and q > 0 be an integer. E is *q-torsion free if each homogeneous R-sequence of length q is a homogeneous E-sequence.

Remark 3.1. If E is q-torsion free then E is *q-torsion free.

Theorem 3.1. Let R be a *G_q -ring, E be a graded finitely generated R-module and q > 0 be an integer. The following conditions are equivalent:

- 1) E satisfies Samuel's condition $(*a_q)$;
- 2) *E* is a *q*-th module of syzygies;
- *3)* E is *q-torsion free.

Proof: 1) \Rightarrow 2) Each *a_q -module on a *G_q -ring is a q-th module of syzygies ([5], 4.6). 2) \Rightarrow 3) R is a *G_q -ring if and only if each (q+1)-th module of syzygies of $E(Syz_{q+1}(E))$ is ${}^*(q+1)$ -torsion free ([8], 4.3). If $Syz_{q+1}(E)$ is ${}^*(q+1)$ -torsion free then $Syz_j(E)$ is *j -torsion free for all $j = 1, \ldots, q+1$ ([8], 4.2). It follows that $Syz_q(E)$ is *q -torsion free. By hypothesis E is a q-th module of syzygies, hence E is *q -torsion free.

For a generic graded ring R we prove that $3) \Rightarrow 2) \Rightarrow 1$.

3) \Rightarrow 2) The two conditions are equivalent for graded modules of finite projective dimension ([1], 4.25).

2) \Rightarrow 1) Each q-th graded module of syzygies is an * a_q -module ([5], 4.4).

Corollary 3.1. Let R be a *G_q -ring, E be a graded finitely generated R-module. E is *q -torsion free \Longrightarrow depth $E_{\wp} \ge \min\{q+1, \operatorname{depth} R_{\wp}\}, \forall \wp \in \operatorname{Spec}(R)$ not graded.

Proof: If E is *q-torsion free then E is * a_q -module by Theorem 3.1. This implies that for all not graded prime ideal $\wp \in Spec(R) \operatorname{depth} E_{\wp^*} \geq \min\{q, \operatorname{depth} R_{\wp^*}\}$ ([5], 4.2). We have the relations ([2], 1.5.9)

```
{\rm depth} R_{\wp^*} = {\rm depth} R_\wp - 1
```

$$\mathrm{depth}E_{\wp^*} = \mathrm{depth}E_{\wp} - 1.$$

So we can write: $depthE_{\wp} \ge \min\{q, depthR_{\wp} - 1\} + 1$. Hence for all not graded prime ideal $\wp \in Spec(R)$ we have:

$$\operatorname{depth} E_{\wp} \geq \min\{\mathbf{q} + 1, \operatorname{depth} R_{\wp}\}.$$

Remark 3.2. If E is (q + 1)-torsion free, then E is q-torsion free ([8], 4.11). Hence by definition E is *q-torsion free.

Proposition 3.1. Let R be a commutative noetherian graded ring, E be a graded finitely generated R-module and q > 0 be an integer. If E is *q-torsion free, then E satisfies the following conditions:

1) For all prime ideal \wp of R such that depth $R_{\wp^*} < q$, E_{\wp^*} is *q-torsion free as R_{\wp^*} -module;

2) For all prime ideal \wp of R such that depth $R_{\wp^*} \ge q$, depth $E_{\wp^*} \ge q$.

Proof: We suppose that E is *q-torsion free. If $\wp \in Spec(R)$, E_{\wp^*} is a graded R_{\wp^*} -module and E_{\wp^*} is *q-torsion free because R_{\wp^*} is flat. It follows that the condition 1) is verified.

Moreover E_{\wp^*} satisfies the condition $(*a_q)$ ([5], 4.4), then each R_{\wp^*} -sequence of length q is an E_{\wp^*} -sequence. As a consequence:

$$\operatorname{depth} R_{\wp^*} \ge q \Rightarrow \operatorname{depth} E_{\wp^*} \ge q,$$

that is the condition 2).

Proposition 3.2. Let R be a *G_q -ring, E be a graded finitely generated R-module and q > 0 be an integer. The following conditions are equivalent:

1) E is *q-torsion free;

2) There exists an exact sequence:

$$0 \rightarrow E \rightarrow F_1 \rightarrow \cdots \rightarrow F_q,$$

where each F_i is a free graded finitely generated R-module; 3) E is *(q-1)-torsion free and for all $\wp \in Spec(R)$ such that $ht_{\wp}^* \ge q$, we have $depth_{E_{\wp}^*} \ge q$.

Proof: 1) \Leftrightarrow 2) It follows by Theorem **3.1**. 1) \Rightarrow 3) If *E* is **q*-torsion free then *E* is *(*q* - 1)-torsion free ([8], 4.2). Let $\wp \in Spec(R)$ such that $ht\wp^* \ge q$. We have depth $R_{\wp^*} \ge q$ because *R* satisfies (**S_q*) condition. By Proposition **3.1** we have:

$$\operatorname{depth} R_{\wp^*} \ge q \Rightarrow \operatorname{depth} E_{\wp^*} \ge q.$$

3) \Rightarrow 1) E satisfies the condition (* a_{q-1}) because E is *(q-1)-torsion free (by Theorem 3.1). Then for all $\wp \in Spec(R)$

$$\operatorname{depth} E_{\wp^*} \ge \min\{q-1, \operatorname{depth} R_{\wp^*}\}, \quad ([5], 4.2).$$

We prove that E satisfies the condition $(*a_q)$, that is

$$\mathrm{depth}E_{\wp^*} \geq \min\{\mathbf{q}, \mathrm{depth}R_{\wp^*}\}.$$

If depth $R_{\wp^*} < q$, then depth $E_{\wp^*} \ge \min\{q-1, \operatorname{depth} R_{\wp^*}\} = \operatorname{depth} R_{\wp^*} \Rightarrow \operatorname{depth} E_{\wp^*} \ge \operatorname{depth} R_{\wp^*}$. It follows that depth $E_{\wp^*} \ge \min\{q, \operatorname{depth} R_{\wp^*}\}$.

If depth $R_{\wp^*} \ge q$, then $\operatorname{ht} R_{\wp^*} \ge \operatorname{depth} R_{\wp^*} \ge q$ and by hypothesis it follows that $\operatorname{depth} E_{\wp^*} \ge q = \min\{q, \operatorname{depth} R_{\wp^*}\}$. Hence E satisfies the condition $(*a_q)$ and, as R is a $*G_q$ -ring, E is *q-torsion free (by Theorem 3.1).

References

- [1] M. Auslander and M. Bridger, Stable module theory (Soc. 94, Providence, R.I., 1969)
- [2] W. Bruns and J. Herzog, Cohen-Macaulay Rings (Cambridge studies in advanced mathematics, 1998)
- [3] M.P. Cavaliere and G. Niesi, "On Serre's conditions in the form ring of an ideal", *J. Math. Kyoto Univ.* **21**, 537 (1981).
- [4] R. Fossum, "Duality over Gorenstein rings", Math.Scand. 26, 165 (1970)
- [5] F.Ischebeck, "Eine Dualität zwischen den Funktoren Ext und Tor", J. Algebra 11, 510 (1969)
- [6] M. Malliavin "Condition aq de Samuel et q-torsion", Bull.Soc.Math. France 96, 193 (1968)
- [7] H.Matsumura, Commutative Algebra (Benjamin-Cummings, Reading, MA, 1980)

[8] M. Paugam, "Condition G_q de Ischebeck-Auslander et condition S_q de Serre", Thèse de Doctorat d'état Université de Monpellier (1973)

Monica La Barbiera Università degli Studi di Messina Dipartimento di Matematica Salita Sperone, 31 98166 Messina, Italy **E-mail**: monicalb@dipmat.unime.it

Presented:	November 28, 2005
Published on line on	November 9, 2006